Training a Binary Classifier with the Quantum Adiabatic Algorithm

نویسندگان

  • Hartmut Neven
  • Vasil S. Denchev
  • William G. Macready
چکیده

This paper describes how to make the problem of binary classification amenable to quantum computing. A formulation is employed in which the binary classifier is constructed as a thresholded linear superposition of a set of weak classifiers. The weights in the superposition are optimized in a learning process that strives to minimize the training error as well as the number of weak classifiers used. No efficient solution to this problem is known. To bring it into a format that allows the application of adiabatic quantum computing (AQC), we first show that the bit-precision with which the weights need to be represented only grows logarithmically with the ratio of the number of training examples to the number of weak classifiers. This allows to effectively formulate the training process as a binary optimization problem. Solving it with heuristic solvers such as tabu search, we find that the resulting classifier outperforms a widely used state-of-the-art method, AdaBoost, on a variety of benchmark problems. Moreover, we discovered the interesting fact that bit-constrained learning machines often exhibit lower generalization error rates. Changing the loss function that measures the training error from 0-1 loss to least squares maps the training to quadratic unconstrained binary optimization. This corresponds to the format required by D-Wave’s implementation of AQC. Simulations with heuristic solvers again yield results better than those obtained with boosting approaches. Since the resulting quadratic binary program is NP-hard, additional gains can be expected from applying the actual quantum processor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Training a Large Scale Classifier with the Quantum Adiabatic Algorithm

In a previous publication we proposed discrete global optimization as a method to train a strong binary classifier constructed as a thresholded sum over weak classifiers. Our motivation was to cast the training of a classifier into a format amenable to solution by the quantum adiabatic algorithm. Applying adiabatic quantum computing (AQC) promises to yield solutions that are superior to those w...

متن کامل

QBoost: Large Scale Classifier Training with Adiabatic Quantum Optimization

We introduce a novel discrete optimization method for training in the context of a boosting framework for large scale binary classifiers. The motivation is to cast the training problem into the format required by existing adiabatic quantum hardware. First we provide theoretical arguments concerning the transformation of an originally continuous optimization problem into one with discrete variab...

متن کامل

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

Robust Classification with Adiabatic Quantum Optimization

We propose a non-convex training objective for robust binary classification of data sets in which label noise is present. The design is guided by the intention of solving the resulting problem by adiabatic quantum optimization. Two requirements are imposed by the engineering constraints of existing quantum hardware: training problems are formulated as quadratic unconstrained binary optimization...

متن کامل

Quantum support vector machine for big feature and big data classification

Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized linear and non-linear binary classifier, can be implemented on a quantum computer, with exponential speedups in the size of the vectors and the number of training examples. At the core of the algorithm is a non-sparse ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008